MAS Lesson 1

OROYAL AIRFORCE AIRCADETS the next generation

Military Aircraft Systems

Weapon Types and Definitions

Objectives

- Parts of LO1 P1 Identify types of air-launched weapons used by military aircraft
- LO2 P4 Identify the type of target that each air-launched weapon is designed for
- LO4 P8 List advantages and disadvantages of unguided weapons
- LO4 P9 List advantages and disadvantages of guided weapons

Objectives

Explain:

- The advantages and disadvantages of guided and unguided weapons
- The different types of ordnance
- The platform-to-target categorisation
- The different types of gun
- Types of warhead

Guided vs Unguided

- In a guided weapon, the path can be changed after launch
- What do you think the advantages and disadvantages of fitting guidance systems to weapons are?

Guided vs Unguided

Guided

- Less collateral damage
- Less friendly fire
- Fewer weapons needed to destroy a target
- 'Stand-off' ability

Unguided

- Cheaper
- Smaller

Accuracy - CEP

• Circular area probable (CEP) is the distance at which the weapon will hit 50% of the time

*

Circular Error Probable

Terminology

- Missile powered, guided
 - Ballistic missile arcs through the air

Terminology

- Missile powered, guided
 - Ballistic missile arcs through the air
 - Cruise missile flies

Cruise Missile

Terminology

- Missile powered, guided
 - Ballistic missile arcs through the air
 - Cruise missile flies
- Rocket powered, unguided
- Bomb unpowered, guided or unguided
- Torpedo powered through water
- Mine lays in wait
- Depth charge underwater bomb used against submarines

Platform to target

Platform and target are categorised as:

- Air
- Surface
- Sub-surface

Air-to-surface

(anti-ship)

Sub-surface-to-surface

(anti-ship)

Gun Classification

• A gun is a direct fire support weapon

Direct fire (guns)

Indirect fire (howitzers and mortars)

Gun Classification

- A gun is a direct fire support weapon
- A shell is a projectile big enough to carry explosives
- A bullet is a projectile which is not

Gun Sub-classifications

- A cannon is a gun that fires shells
- An autocannon is an automatically loaded cannon
- A machine-gun is an automatically loaded gun firing bullets

Warheads

 Kinetic – uses speed and mass of the projectile to cause damage (like a bullet)

Kinetic energy penetration

Warheads

- Kinetic uses speed and mass of the projectile to cause damage (like a bullet)
- Chemical energy:
 - Direct contact focuses explosive effect onto target
 - Small area, heavy damage
 - Types of shaped charge include:
 - HEAT high-explosive anti-tank
 - HESH high-explosive squash head
 - May also work by penetrating first (kinetic energy) before exploding

Direct contact explosion

Shaped charge (HEAT)

NAV MAIR Royth

Direct contact explosion

Shaped charge (HESH)

Direct contact explosion

Penetrating warhead

Warheads

- Kinetic uses speed and mass of the projectile to cause damage (like a bullet)
- Chemical energy:
 - Direct contact focuses explosive effect onto target
 Fragmentation damage is from flying fragments –
 large area, less damage

Fragmentation

Warheads

- Kinetic uses speed and mass of the projectile to cause damage (like a bullet)
- Chemical energy:
 - Direct contact focuses explosive effect onto target
 - Fragmentation damage is from flying fragments
 - Thermobaric damage is from a high-temperature pressure wave

Warheads

- Kinetic uses speed and mass of the projectile to cause damage (like a bullet)
- Chemical energy:
 - Direct contact focuses explosive effect onto target
 - Fragmentation damage is from flying fragments
 - Thermobaric damage is from a high-temperature pressure wave
 - Incendiary starts fires

Incendiary

Warheads

- Kinetic uses speed and mass of the projectile to cause damage (like a bullet)
- Chemical energy:
 - Direct contact focuses explosive effect onto target
 - Fragmentation damage is from flying fragments
 - Incendiary starts fires
 - Submunition warhead splits into multiple warheads (any of the above types)

Submunition

Practise Questions

- Which of the following describes a weapon that is unguided and follows a ballistic arc?
 - Rocket
 - Ballistic missile
 - Cruise missile
 - Torpedo

Practise Questions

- Which of the following fires only solid projectiles?
 - Cannon
 - Auto-cannon
 - Machine gun
 - Mortar

Practise Questions

- Which of the following would not be found in the surface environment?
 - Armoured vehicles
 - Warships
 - Aircraft on the ground
 - Submerged submarines

Practise Questions

- Which of these warhead types would be un-suitable for attacking a heavily-protected target such as an armoured vehicle?
 - HEAT
 - Kinetic energy
 - Fragmentation
 - Shaped-charge submunition

Practise Questions

- Upon which attribute do un-guided weapons beat guided weapons?
 - Collateral damage
 - Cost
 - Friendly-fire
 - Range

Objectives

- Parts of LO1 P1 Identify types of air-launched weapons used by military aircraft
- LO2 P4 Identify the type of target that each air-launched weapon is designed for
- LO4 P8 List advantages and disadvantages of unguided weapons
- LO4 P9 List advantages and disadvantages of guided weapons

MAS Lesson 2

OROYAL AIRFORCE AIRCADETS the next generation

Military Aircraft Systems

Weapon Types and Definitions

Objectives

 This lesson covers parts of Learning Objective 3 - Know how air-launched weapons work as systems and interact with the aircraft on which they are carried

Objectives

Explain:

- The difference between "homing" systems and "navigated" systems.
- The concept of fire-and-forget
- The concept of primary and terminal guidance
- The basic types of navigation
- The types of energy used in homing systems
- The basic types of homing system
- The types of homing systems in common use
- Fuzes
- Types of weapon power
- Missile flight controls

Guided vs Navigated

Navigated

- Does not require line of sight
- Generally doesn't broadcast energy or rely on the target to do so
- Can't be used against a moving target unless it can be continually updated.

Homing

 Can be used against a moving target

Fire and Forget

- Some guidance types require input from the launch platform (or a third party) after launch
- Others are entirely self-sufficient after launch these are known as "Fire and Forget"
- Unguided weapons are inherently fire and forget and so aren't described as such

Primary and Terminal Guidance

- Some long range weapons use accurate but short-ranged guidance systems for the final moments of their flight – known as *terminal* guidance
- These weapons will also need a guidance system suitable for the earlier stages the *primary* or *mid-course* guidance.

Navigation Systems

- Terrain contour matching systems 'see' using radar and match their surroundings to an on-board map. Types include TERCOM and TERPROM
 - Self contained
 - Accurate
 - Expensive

Terrain Contour Matching TERCOM and TERPROM

Navigation Systems

- Terrain contour matching systems 'see' using radar and match their surroundings to an on-board map. Types include TERCOM and TERPROM
- Inertial navigation systems use an autopilot based on gyroscopes or accelerometers to keep the weapon flying on an axis.
 - Self-contained
 - No emissions
 - Accuracy decreases with range

Navigation Systems

- Terrain contour matching systems 'see' using radar and match their surroundings to an on-board map. Types include TERCOM and TERPROM
- Inertial navigation systems use an autopilot based on gyroscopes or accelerometers to keep the weapon flying on an axis.
- Satellite guided systems use satellites to triangulate their positions. Types include GPS, GLOSNASS and Galileo.
 - No emissions
 - Reliant on jammable/destroyable satellites

Satellite Guidance

Navigation Systems

- Terrain contour matching systems 'see' using radar and match their surroundings to an on-board map. Types include TERCOM and TERPROM
- Inertial navigation systems use an autopilot based on gyroscopes or accelerometers to keep the weapon flying on an axis.
- Satellite guided systems use satellites to triangulate their positions. Types include GPS, GLOSNASS and Galileo.
- Command line of sight systems are essentially remote-controlled by an operator (manual) or a computer (semi-automatic)

How does the firer find the target?

- The firer's eyes detect the light
- The firer's brain processes information in the form of wavelengths – to identify the target

What if there is no light?

What if it's a firefight instead of a range?

Energy types. All homing on target weapons rely on some form of energy. The following types of energy are used:

- IR (heat)
- Visible light (laser)
- Radio waves (radar)
- Acoustic (sonar)

- Passive the weapons receives its energy from the target, emitted either:
 - Intentionally Radar, radio transmissions, jamming
 - Incidental aircraft engine heat or submarine noise

Passive homing

- Passive the weapons receives its energy from the target, emitted either:
 - Intentionally Radar, radio transmissions, jamming
 - Incidental aircraft engine heat or submarine noise
- Active the weapon transmits the energy

Active homing

- Passive the weapons receives its energy from the target, emitted either:
 - Intentionally Radar, radio transmissions, jamming
 - Incidental aircraft engine heat or submarine noise
- Active the weapon transmits the energy
- Semi-active a third party transmits the energy, such as:
 - The launch aircraft
 - Another aircraft
 - Friendly ground forces

Semi-active homing

Advantages and disadvantages.

Passive –

- Receive only, relies on target producing energy
- Gives no warning
- Fire and forget

Advantages and disadvantages.

Active –

- Self contained
- Fire and forget
- Can only hold a small, low powered transmitter (often battery-powered)

Advantages and disadvantages. Semi-active –

- Not self-contained
- Allows for more powerful transmitter
- Potentially a more expensive transmitter, as the transmitter is not disposable.
- Not fire and forget.

Types used in practice

- Passive IR
- Semi-active laser
- All types of radar (active, semi-active and passive)
- Passive and active sonar

• Time

Time fuze

Fuzes

- Time
- Impact

Impact fuze

Fuzes

- Time
- Impact
- Delay

Delay fuze

Fuzes

- Time
- Impact
- Delay
- Proximity

Proximity fuze

Fuzes

- Time
- Impact
- Delay
- Proximity
- Remote

Fuzes

- Time
- Impact
- Delay
- Proximity
- Remote
- Barometric

Barometric fuze

Fuzes

- Time
- Impact
- Delay
- Proximity
- Remote
- Barometric
- Combination more than one of the above types

Powered vs Unpowered

 Discuss - what do you think are the relative advantages and disadvantages?

Powered vs Unpowered

Powered

- Engage scattered targets
- Stay out of range of defences
- Extra kinetic energy for destructive effect (especially at low level or low launch speed)

Unpowered (bombs)

- Cheaper
- Lighter more can be carried on an aircraft

 Discuss – What factors are important when choosing the propulsion system for a missile?

- Cost
- Speed and acceleration
- Weight
- Diameter/frontal area
- Power generation for other systems
- Safety
- Maintenance

Rockets

- Solid fuel
 - Cheap
 - Stable
- Liquid fuel
 - Complex
 - Expensive
 - Modern versions becoming more stable

Jets

- Pulse jet
 - Very simple
 - Low powered and obsolete
- Turbo jet
 - Relatively simple
 - Low frontal area
- Turbo fan
 - Efficient
 - Greater frontal area
- Ram jet
 - High fuel consumption
 - Good for supersonic flight

Torpedoes

- Electric motor with battery
- Fuel and oxidiser or monopropellant powering:
 - Turboshaft jet engine
 - Internal combustion engine
- Rocket

Flight Controls

- Cruise missiles generally similar to an aircraft (possibly missing rudder or ailerons)
- Ballistic missile manoeuvring fins

- Which of the following is a means of navigating a weapon to a fixed location?
 - Passive IR
 - TERPROM
 - Active radar
 - Semi-active radar

- What type of weapon would most likely be powered by liquid-fuelled rocket?
 - Air-to-surface cruise missile
 - Surface-to-surface ballistic missile
 - Bomb
 - Unguided rocket

- What type of weapon would most likely be powered by a gas turbine engine such as a turbofan or turbojet?
 - Air-to-surface cruise missile
 - Surface-to-surface ballistic missile
 - Bomb
 - Unguided rocket

- What type of weapon would most likely be powered by solid-fuelled rocket?
 - Long-range air-to-surface cruise missile
 - Long-range surface-to-surface ballistic missile
 - Bomb
 - Unguided rocket

- Which guidance system would be most suitable for an air-to-air missile?
 - Semi-active Laser
 - Active Radar
 - MCLOS
 - GPS

Objectives

Explain:

- The difference between "homing" systems and "navigated" systems.
- The concept of fire-and-forget
- The concept of primary and terminal guidance
- The basic types of navigation
- The types of energy used in homing systems
- The basic types of homing system
- The types of homing systems in common use
- Fuzes
- Types of weapon power
- Missile flight controls

MAS Lesson 3

OROYAL AIRFORCE AIRCADETS the next generation

Military Aircraft Systems

Air-to-surface Ordnance

Objectives

- LO1 P1 Identify types of air-launched weapons used by military aircraft
- LO2 P3 Describe capability and limitations of air-to-ground missiles

Objectives

Explain:

- The history of air-to-surface and surface-to-surface missiles
- The main roles for air-to-surface missiles
- Explain the type of damage required to disable target types
- Details of the main missiles launched from aircraft in British service

History

 World War II - V1 and V2 developed as 'stand-off' weapons. Inertially guided, V1 was a cruise missile and V2 a ballistic missile

V-1 Early German cruise missile

V-2 Early German ballistic missile

History

• Cold War

 Stand-off weapons allowed nuclear attack of heavily-defended targets, such as Hound Dog and Blue Steel.

AGM-28 Hound Dog

US Air-launched cruise missile

Blue Steel

British Air-launched cruise missile

History

- Cold War
 - Stand-off weapons allowed nuclear attack of heavily-defended targets, such as Hound Dog and Blue Steel.
 - Anti-ship weapons were developed by the USSR to counter NATO's superiority at sea, such as the Styx.
 Soon, weapons were small enough for air launch, such as the Exocet.

SS-N-1 Styx

Soviet anti-ship missile

History

- Gulf War
 - Guided weapons now commonplace 10% of all air-surface weapons launched were guided
 - In 2003 invasion, 90% of air-surface weapons launched were guided

Roles

- Strategic strike
- Suppression of enemy air defence (SEAD)
- Anti-tank
- Anti-shipping
- Close air support (CAS)

- Strategic strike
 - Large targets
 - Long term effect
 - Large warhead required

Suppression of enemy air defence (SEAD)

- Delicate targets
- Short term effect
- Speed and accuracy more important than destructive effect

- Anti-tank
 - Categorised as M-Kill or K-Kill
 - Mobility-Kill tank unable to move
 - Complete destruction
 - A relatively small amount of explosive is required to achieve M-Kill or K-Kill
 - Friendly troops or neutral personnel may be in the vicinity
 - Accuracy is favoured over warhead size

- Anti-shipping
 - Ships can be damaged or sunk
 - Larger ships may require multiple hits to sink
 - Ships defences may need to be penetrated, by:
 - Speed
 - Stealth
 - Low-altitude
 - A combination of the above

Damage Levels

- Anti-shipping
 - Ships can be damaged or sunk
 - Larger ships may require multiple hits to sink
 - Ships defences may need to be penetrated
 - Defences include:
 - Surface-to-air missiles (SAM) these may target either the missiles or the launch aircraft

 Close-in weapons systems (CIWS) – point defence systems based on guns or short-range missiles

Decoys and electronic counter-measures (ECM)

Storm Shadow

Strategic Strike Cruise Missile

Engine	Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
Turbojet	240+ km	1,300 kg	Mach 0.8	450 kg Dual Charge HE	INS, GPS TERPROM; terminal IR	Tornado

Storm Shadow

Strategic Strike Cruise Missile

Hellfire

Anti-armour and General Purpose Missile

Engine	Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
Rocket	8 km	45 kg	> Mach 1	9 kg tandem or thermo-ba ric	Semi-acti ve laser	Reaper and Apache

Anti-armour and General Purpose Missile

Brimstone

Long-range Anti-armour Missile

Engine	Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
Rocket	60+ km	49 kg	> Mach 1	Tandem HEAT	INS; terminal active radar or SA laser	Tornado and Reaper

Brimstone

Long-range Anti-armour Missile

Sea Venom

Short-range Anti-ship Missile (Royal Navy)

Engine	Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
Rocket + booster rocket	Not known	110 kg	High-sub sonic	30kg penetrating HE	IIR and datalink	Wildcat HMA2

Short-range Anti-ship Missile (Royal Navy)

Slide 119

AIR CAD

the next generation

ETS

Launch Engine Range Speed Warhead Guidance Aircraft Weight 3 kg Wildcat 2-stage Laser Mach 1.5 8 km 13 kg rocket dual-effect SACLOS HMA2

Martlet

Short-range Anti-ship Missile (Royal Navy)

- What is this weapon?
 - Brimstone
 - Martlet
 - Sea Venom
 - Storm Shadow

• How large is the warhead of a Sea Venom missile?

- 3 kg
- 30 kg
- 300 kg
- 3,000 kg

- What is the range of a Martlet missile?
 - 0.8km
 - 8km
 - 80km
 - 800km

- Which weapon would **not** be suitable for attacking an armoured fighting vehicle?
 - Hellfire
 - Sea Venom
 - Brimstone
 - Martlet

Objectives

Explain:

- The history of air-to-surface and surface-to-surface missiles
- The main roles for air-to-surface missiles
- Explain the type of damage required to disable target types
- Details of the main missiles launched from aircraft in British service

MAS Lesson 4

OROYAL AIRFORCE AIRCADETS the next generation

Military Aircraft Systems

Air-to-surface Ordnance

Objectives

 LO1 P1 - Identify types of air-launched weapons used by military aircraft

Objectives

Explain:

- The history of bombs and air-to-surface rockets
- Details of the main bombs and rockets launched from aircraft in British service.

History

- Early Bombing
 - First raid in 1911 from Italian reconnaissance aircraft
 - First bomber carried just 55 kg
 - At the start of WWII bombers could carry 100 times that

Etrich Taube

German-made reconnaissance aircraft used for the first bombing raid

World War II - Fritz X was a guided anti-ship bomb – hitting a moving ship was very difficult in WWII without risky dive-bombing.

Fritz-X Early German guided bomb

History

- Cold War
 - Paveway guided bombs grew from a USAF need to engage point targets accurately in Vietnam
 - Against the Thanh Hoa bridge one Paveway did what 800 dumb bombs couldn't.

GBU-11/B Paveway 1

American guided bomb

Paveway II & III and Enhanced Paveway II & III

Guided Bombs

	Launch Weight	Warhead	Guidance	Aircraft	
PW II	E46 kg	227 kg HE	Laser	Tornado and	
EPW II	546 K <u>y</u>	filling	Laser, INS, GPS	Typhoon	
PW III	1041 kg	500 kg HE	Laser	Torpado	
EPW III	1241 Kg	filling	Laser, INS, GPS	romado	

Paveway II & III and Enhanced Paveway II & III

Guided Bombs

ROYAL AIR FORCE ΙΖ ΓΔΠ the next generation

ETS

Paveway IV Guided Bomb

Launch Weight	Warhead	Guidance	Aircraft
225 kg	?	Laser, INS, GPS	Tornado and Typhoon

Paveway IV Guided Bomb

GP Bomb 505kg Unguided Bomb

Launch Weight	Warhead	Guidance	Aircraft
505 kg	227 kg HE filling	None	Tornado

GP Bomb 505kg Unguided Bomb

CRV-7 Unguided Rocket (Army)

Engine	Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
Rocket	5.5 km	11 kg	?	6 kg HE or kinetic penetrator	None	Apache, Harrier (former)

CRV-7 Unguided Rocket (Army)

> **O**ROYAL AIRFORCE AIR CADETS the next generation

- What is this weapon?
 - CRV-7
 - Paveway IV
 - GP Bomb
 - Storm Shadow

- How large is the warhead of a CRV-7 rocket?
 - 6kg
 - 60kg
 - 600kg
 - 6,000kg

- What is the range of a CRV-7 rocket?
 - 0.55 km
 - 5.5 km
 - 55 km
 - 550 km

- Which of the following is not a bomb?
 - 505kg GP
 - Paveway IV
 - Brimstone
 - Paveway II

Objectives

Explain:

- Advantages and disadvantages of missiles, bombs and rockets
- The history of air-to-surface and surface-to-surface weapons
- The main roles for air-to-surface missiles
- Explain the type of damage required to disable target types
- Details of the main missiles, bombs and rockets launched from aircraft in British service

MAS Lesson 5

OROYAL AIRFORCE AIRCADETS the next generation

Military Aircraft Systems

Air-to-air Ordnance

Objectives

- LO1 P1 Identify types of air-launched weapons used by military aircraft
- LO2 P2 Describe capability and limitations of air-to- air missiles

Objectives

Explain:

- •The history of air-to-air missiles
- •The concept of "dogfight" and beyond-visual-range weapons
- Types of countermeasure
- •The details of:
 - •Meteor
 - •AMRAAM
 - •ASRAAM

- World War I Unguided rockets used in the air-to-air role, fired electronically from biplanes and balloons
- World War II Germany faced Allied air superiority so created weapons like the Ruhrstahl X-4

Ruhrstahl X-4

World War II German Prototype Air-to-air Missile

- World War I Unguided rockets used in the air-to-air role, fired electronically from biplanes and balloons
- World War II Germany faced Allied air superiority so created weapons like the Ruhrstahl X-4
- Cold War US developed weapons in the 50's:
 USAF AIM-4 Falcon

AIM-4 Falcon

Cold War USAF Air-to-air Missile

- World War I Unguided rockets used in the air-to-air role, fired electronically from biplanes and balloons
- World War II Germany faced Allied air superiority so created weapons like the Ruhrstahl X-4
- Cold War US developed weapons in the 50's:
 - USAF AIM-4 Falcon

- USN - AIM-9 Sidewinder

AIM-9 Sidewinder

US Air-to-air Missile

- World War I Unguided rockets used in the air-to-air role, fired electronically from biplanes and balloons
- World War II Germany faced Allied air superiority so created weapons like the Ruhrstahl X-4
- Cold War US developed weapons in the 50's:
 - USAF AIM-4 Falcon
 - USN AIM-9 Sidewinder
- Early F-4 actually made without a gun
- In the Falklands British Harriers could defeat Argentinian opponents using upgraded Sidewinders

Types

- Short-ranged
 - Less than 30km range
 - Within visual range
 - Range less important than agility
 - Often IR guided
 - Known as
 - SRAAM
 - WVRAAM
 - Dogfight missiles

Types

- Short-ranged
- Medium- and Long-ranged
 - Beyond visual range
 - Usually radar-guided
 - May also have inertial guidance and/or mid-course updates from the launch aircraft
 - May be called:
 - BVRAAMs
 - MRAAMs
 - LRAAMs

Radar Lock

- Wide beam for searching
- Narrow, steered beam for targeting

Search Radar

Surface-to-air engagement

Track Radar

Surface-to-air engagement

Look-down, shoot-down

 Background clutter makes radar detection and lock very difficult when positioned above a target

Radar – no backdrop

Air-to-air engagement

Radar – against a backdrop

Air-to-air engagement

Look-down, shoot-down

- Background clutter makes radar detection and lock very difficult when positioned above a target
- Computer processing and wavelength sensing allow modern systems to separate moving objects from static ones.

Countermeasures

- Carried to protect against AAMs
- Create a better target than the actual aircraft
- Chaff:
 - Used against radar-guided missiles
 - Cloud of metal strips to reflect radar
- Flares:
 - Used against IR missiles
 - Create a much hotter target

Weapons

Engine	Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
Rocket	15 km	87 kg	> Mach 3	10 kg HE, laser proximity fuze	Imaging IR	Typhoon & Tornado

Weapons

AMRAAM BVRAAM

AMRAAM

BVRAAM

Engine	Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
Rocket	>40 km	150 kg	Mach 4	18 kg fragmentation	INS with datalink; terminal active radar	Typhoon

Weapons

Meteor BVRAAM

> OROYAL AIR FORCE AIR CADETS the next generation

Meteor

BVRAAM

Engine	Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
Solid-fu el ramjet	>300 km	185 kg	> Mach 4	Fragmentation	INS with datalink; terminal active radar	Typhoon

- Which of the following is generally a feature of short-range (WVRAAMs) rather than long-range (BVRAAMs) missiles?
 - Infra-red guidance
 - Mid-course updates
 - Semi-active radar guidance
 - Inertial navigation

- Which statement is not true?
 - Chaff can be used to decoy active radar-guided missiles
 - Flares can be used to decoy semi-active radar-guided missiles
 - Electronic-counter-measures are often part of a defensive aids suite
 - Basic counter-measures work by creating a target that is more inviting than the aircraft deploying them

- Which of the following guidance systems is unlikely to be found on an air-to-air missile?
 - Passive infra-red
 - Active radar
 - Inertial navigation
 - Semi-active laser

- What is the stated range of a Meteor missile?
 - 3+ km
 - 30+ km
 - 300+ km
 - 3,000+ km

- Which feature is not found on any current AAM in British service?
 - Ramjet engine
 - Active radar guidance
 - Solid-rocket motor
 - Semi-active radar guidance

Objectives

Explain:

- •The history of air-to-air missiles
- •The concept of "dogfight" and beyond-visual-range weapons
- Types of countermeasure
- •The details of:
 - •Meteor
 - •AMRAAM
 - •ASRAAM

MAS Lesson 6

OROYAL AIRFORCE AIRCADETS the next generation

Military Aircraft Systems

Other Aircraft Weapons

Objectives

 LO1 P1 - Identify types of air-launched weapons used by military aircraft

Objectives

Explain:

- •The main roles for aircraft guns:
 - •Air-to-air combat
 - Strafing
 - •Dual-role
- •The details of aircraft guns
- •The types of anti-submarine weapon
- •The details of Sting Ray and Mk 54

Roles:

- Air-to-air for close-range combat
- Strafing attacking ground targets
- Dual-role combines the two roles

Minigun Rotary gun

Range	System Weight	Projectile	Operation	Rate of fire	Target	Aircraft
1 km	39 kg	7.62mm rifle bullets	Electric rotary	4,000 RPM	Ground	Chinook

M60 Machine gun

Range	System Weight	Projectile	Operation	Rate of fire	Target	Aircraft
2 km	11 kg	7.62mm rifle bullets	Gas	550 RPM	Ground	Chinook

L112A1 GPMG

Machine gun

Range	System Weight	Projectile	Operation	Rate of fire	Target	Aircraft
2 km	14 kg	7.62mm rifle bullets	Gas	600-800 RPM	Ground	Puma, Wildcat & Merlin

Machine gun

Guns

Range	System Weight	Projectile	Operation	Rate of fire	Target	Aircraft
2.5 km	37 kg	12.7mm bullets	Recoil	1,025 rpm	Surface	Wildcat & Merlin

Mauser 27mm cannon

Mauser

27mm cannon

System Rate of **Projectile** Operation Range Target Aircraft Weight fire Tornado 27mm Gas-cycle 1,000 or Dual-pu ~4 km 100 kg explosive and d revolver 1,700 rpm rpose shells Typhoon

GAU-22A

25 mm cannon

System Rate of **Projectile** Operation Range Target Aircraft Weight fire 25mm Dual-pu Lightning Pneumatic 3,300 rpm 104 kg 3.7 km explosive rotary П rpose shells

Chain Gun 30mm cannon

Chain Gun

30mm cannon

Range	System Weight	Projectile	Operation	Rate of fire	Target	Aircraft
1.5 km	55 kg	30mm explosive shells	Electric	625 rpm	Ground	Apache

Types:

- Torpedoes main weapon type used
- Depth charges still useful in shallow water

Sting Ray Anti-submarine torpedo

> **OROYAL** AIR FORCE AIR CADETS the next generation

Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
11 km	265 kg	80+ km/h	45 kg shaped charge	Active sonar	Merlin HM2 & Wildcat HMA2

Sting Ray Anti-submarine torpedo

Mk 54 Mod 0

Anti-submarine torpedo

Range	Launch Weight	Speed	Warhead	Guidance	Aircraft
11+ km	276 kg	74+ km/h	44 kg high explosive	Active/passive sonar	Poseidon

Mk 54 Mod 0

Anti-submarine torpedo

Mk 11 Mod 3

Anti-submarine depth charge

Launch Weight	Warhead	Guidance	Aircraft
112 kg	77 kg high explosive	Nil	Merlin HM2 & Wildcat HMA2

Mk 11 Mod 3

Anti-submarine depth charge

- Which of these weapons is not used for self-defence by helicopters?
 - GPMG
 - GAU-22
 - M60
 - Minigun

- Which of the following is a 30mm calibre weapon?
 - Minigun
 - M3M
 - GPMG
 - Chain Gun

- Which of the following is a multi-barrel (Gatling-type) weapon?
 - M60
 - Mauser
 - GAU-22
 - Chain Gun

- Which weapon cannot fire explosive shells?
 - M3M
 - Mauser
 - GAU-22
 - Chain Gun

- How is the Sting Ray guided?
 - Radar
 - Laser
 - Infra-red
 - Acoustic

Objectives

Explain:

- •The main roles for aircraft guns:
 - •Air-to-air combat
 - •Strafing
 - •Dual-role
- •The details of aircraft guns
- •The types of anti-submarine weapon
- •The details of Sting Ray and Mk 54

MAS Lesson 7

OROYAL AIRFORCE AIRCADETS the next generation

Military Aircraft Systems

Carriage and Safety

Objectives

- LO3 P6 Identify safety mechanisms used to protect the launch aircraft
- Parts of LO3 P7 Describe how an air-launched weapon is released from the aircraft and guided towards its target

Objectives

Explain:

- Weapon type and version markings
- Carriage equipment
- Details of the rail launchers and ejection release units in RAF service

Terminology

- Station point to which a store is attached; also hardpoint
 - Wet plumbed for fuel tanks
 - *Dry* not plumbed
- Pylon a device to carry stores (attached to a station)

Markings

Marked either in full or by bands

- Yellow Live Warhead
- Brown Live Rocket Motor
- Pink Live Seeker (on Training Missile)
- Blue Inert (Training) Weapon

- Ejection release units
 - Use compressed gas to push the store down away from the aircraft
 - Prevent damage to the aircraft from rocket exhaust
 - Limited flight envelope to prevent collision

Carriage Ejection Release Unit

- Ejection release units
 - Use compressed gas to push the store down away from the aircraft
 - Prevent damage to the aircraft from rocket exhaust
 - Limited flight envelope to prevent collision
- Rail launchers
 - Rocket motor drives weapon directly off of rail
 - Wide flight envelope
 - Rely on power, so unsuitable for bombs

Carriage Rail Launcher

Sway brace - Adjustable bracket to prevent damage from swinging

Rail launchers:

- Tornado ASRAAM launchers
 - LAU7/A launcher only
 - BOL-304 added chaff dispenser
- Typhoon
 - ITSPL (Integrated Tip Stub Pylon Launcher) similar to BOL-304 but integral to the aircraft
 - MFRL (Multi-function Rail Launcher) optional pylon for all AAMs

- Eject launchers (recessed) semi-recessed carriage on Typhoon for AMRAAM or Meteor
- Along with ITSPL means Typhoon can carry six AAMs without affecting other weapons load

Slide 224

the next generation

Safety Features

Protect the aircraft and ground crew, ensure that weapons are only armed and released when required

- Before deployment rigorous testing before clearance for use
- On the ground safety pins prevent initiation on the ground. Pins are clearly marked and removed only when the aircraft is ready to depart

Safety Features

Safety Pins

Orange tags make the pins obvious

Safety Features

- In the air
 - MASS (Master Armament Safety Switch) arms the weapons so that they can be released and detonate
 - Late-arm Switch needs to be selected to allow weapons to be released
 - Emergency Stores Jettison Switch allows the pilot to release all external stores in an emergency

- What colour denotes a live warhead?
 - Blue
 - Yellow
 - Brown
 - Pink

- Which of the following cannot be removed from the aircraft?
 - LAU7/A
 - BOL-304
 - ITSPL
 - MFRL

- Which of the following has the role of preventing a store from swinging under g-loading?
 - Hardpoint
 - Sway brace
 - Safety pins
 - Ejector release units

- Which of the following can launch AMRAAM?
 - LAU7/A
 - BOL-304
 - ITSPL
 - MFRL

- Which of the following contains a chaff dispenser?
 - Recessed Ejection Launchers
 - BOL-304
 - ITSPL
 - MFRL

Objectives

Explain:

- Weapon type and version markings
- Carriage equipment
- Details of the rail launchers and ejection release units in RAF service

